:
·
·
: C
: 东
个人 介:
东 , 从事 专业、 专业 作。主 :《 与信 》、《PLC 》、《 仿 》、《 与 传》、《 代 》、《 人与人 》。主 4 。 EU 作 1 、 东 4 。 与 仿 , 2014 候人。 一作 (兼) : SCI 20 、EI 30余; 一作 产 15 (专 5); 专 2 。
兼 : 专 ; 位与 中 / 专 。
:
于 与 作 ; 于 光 。 优先 : 专业、体 专业、体 业、 专业; Solidworks、Ansys/Fluent、MATLAB、PLC 优先。
况 ():
主 : 上 : 于 , 2017.1-2020.12。
: 1、一作 代 : [1] Nonlinear aeroelastic stability analysis of wind turbine blade with bending-bending-twis
coupling. Journal of Fluids and Structures. (SCI) [2] Vibration and flutter of wind turbine blade modeled as anisotropic thin-walled closed-section beam. SCIENCE CHINA Technological Sciences. (SCI) [3] Sliding mode control of active trailing-edge flap based on adaptive reaching law and minimum parameter learning of neural networks. Energies. (SCI)

and radial basic function neural network proportional-integral-derivative controller. Proc IMechE Part I: J Systems and Control Engineering. (SCI)

- [5] Theoretical modeling and vibration control for pre-twisted composite blade based on LLI controller. Trans Inst Meas Control. (SCI)
- [6] Flutter suppression of blade section based on model prediction control. Trans Inst Meas Control. (SCI)
- [7] Divergent instability control of aeroelastic system driven by aerodynamic forces under disturbance based on discrete sliding mode control algorithms. Meas Control. (SCI)
- [8] Quadratic feedback-based equivalent sliding mode control of wind turbine blade section based on rigid trailing-edge flap. Meas Control. (SCI)
- [9] Vibration control of wind turbine blade based on data fitting and pole placement with minimum-order observer. Shock VIb. (SCI)
- [10] Pitch control of stall-induced flap/lag flutter of wind turbine blade section. Shock VIb. (SCI)
- [11] Flap/Lag Stall Flutter Control of Large-Scale Wind Turbine Blade Based on Robust H2 Controller. Shock VIb. (SCI)
- [12] Classical Flutter and Active Control of Wind Turbine Blade Based on Piezoelectric Actuation. Shock VIb. (SCI)
- [13] Vibration and aeroelastic control of wind turbine blade based on B-L aerodynamic model and LQR controller. J Vibroeng. (SCI)
- [14] The limit cycle oscillation of divergent instability control based on classical flutter of blade section. J Vibroeng. (SCI)

```
[15]
        于
                                                                                        . (EI)
```

[16] 于 . (EI)

于 [17] 2D 仿 . (EI)

与 与冲 [18] 于 作 . (EI)

[19] 准 与冲 . (EI) LLTR

伺 . 中 [20] . (EI)

产 2、代

[1] 专 . Golden Light Academic

Publishing.

于 [2]

于全 [3] 光光 传

于 共 [4]

干 [5] 伸

于 伸 [6]

于 OPC 中 [7]

伺 件. [8]

[9] 作

主 [10] 件 作:

: